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The so-called ' water-bag ' method is used to study the behaviour of a two-dimensional 
inviscid layer of constant vorticity w and of mean thickness Sadjacent to a wall with slip 
at  the wall. A nonlinear initial-value equation is derived which describes the motion 
of the material interface separating the rotational fluid within the layer from the 
irrotational free stream, for the case where this interface is subject to streamwise cyclic 
disturbances to its undisturbed shape. A linearized solution to this equation shows 
that a sinusoidal disturbance of wavelength h propagates as one mode of a neutrally 
stable Kelvin-Helmholtz wave with velocity wh[ 1 - exp ( - 4;rrS/h)]/ 477 relative to 
the fluid a t  infinity. Numerical solutions of the full nonlinear equation for a range of 
wavelengths and finite disturbance amplitudes indicate different behaviour. For 
sufficiently large amplitude the interface valleys evolve into long re-entrant wedges 
of irrotational fluid which are ' entrained ' into the layer and which are separated from 
the free stream by lobes or bulges of rotational fluid. This single-mode nonlinear inter- 
facial distortion could be generated over a broad wavelength range with no indication 
of preferential scaling based on 8. It is suggested that the interface behaviour bears 
distinct resemblance to flow features observed at the interface between turbulent and 
non-turbulent fluid in recent smoke-in-air flow-visualization studies of the outer part 
of a constant pressure turbulent boundary layer. The calculated rotational fluid lobe 
velocities, which are not very different from the equivalent linearized wave velocities, 
are found to be in reasonable agreement with the few existing measurements of the 
velocity of bulges at  the turbulent-nonturbulent fluid interface, while the computed 
velocity field in the lobe is in qualitative agreement with the general flow pattern 
observed in experiments. In  the absence of a preferred scale or range of scales for the 
development of the interfacial distortion, however, it is concluded that the present 
results cannot be interpreted as supporting the hypothesis of the presence of large- 
scale coherent motions in the outer part of the layer. 

1. Introduction 
It is widely recognized that the dynamics of unsteady two-dimensional vortex 

interactions are of considerable relevance to the study of many plane high-Reynolds- 
number flows in which free circulation can be seen to play a significant role (for a 
recent survey of the subject see Saffman & Baker 1979). For a particular flow the 
usual approach has been to model the dominant features of the unsteady circulation 
distribution either by arrays of point vortices (Acton 1976), where a finite-vorticity 
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approximation is required, or by vortex sheets (e.g. Fink & Soh 1978), where the thin- 
shear-layer approximation is thought to be adequate. The calculated (on a digital 
computer) time evolution of the circulation system may then be studied as a means of 
identifying the key structural features of the flow development. The principal motiva- 
tion for such studies is the belief that the behaviour of persistent organized structures 
which have been observed experimentally in many turbulent flows may be explained 
as a direct consequence of the overall nonlinear inviscid vortical interaction. 

Both the point-vortex method, or hybrid variations such as the ‘ cloud-in-cell’ 
method (Christiansen 1973; Christiansen & Zabusky 1973; Roberts & Christiansen 
1972)’ and the vortex-sheet approach may be regarded as attempts to solve Euler’s 
equation in the form of the nonlinear unsteady inviscid vorticity equation in two 
dimensions. For different reasons both methods contain inherent theoretical diffi- 
culties which are probably related to their numerical performance. Saffman & Baker 
(1  979) point out that a moving array of point vortices is at  best a weak solution of 
Euler’s equation. Moreover, this approach cannot be readily studied analytically to 
determine for example its behaviour in the linearized approximation for given initial 
and boundary conditions. There is increasing evidence (see Moore 1979) that the 
Birkhoff-Rott vortex-sheet equation (Birkhoff 1962; Rott 1956) does not constitute a 
well-posed initial-value problem at all in many instances. The result is that the 
vortex-sheet model may be physically realistic only in situations in which it is under- 
going continuous lateral stretching in the plane of the two-dimensional motion, 
otherwise exhibiting non-physical pathologically unstable behaviour. An attempt by 
Moore (1978) to extend the model to a vortex layer of thickness which is everywhere 
small compared to the local radius of curvature does not remedy matters since the 
spurious short-wave instability is not eliminated. 

It is clearly desirable to proceed beyond the vortex sheet and point-vortex 
approaches to consider the dynamics of properly continuous and finite-vorticity 
distributions. For inviscid flow the simplest and mathematically most convenient 
initial distribution is that of constant vorticity w within several regions Rj since in this 
case for two-dimensional flow (as will be seen) the entire fluid motion can be reduced 
to the motion of the curves Cj bounding the Rj. Such an approach has been termed the 
water-bag method, the w = constant ‘water bags’ being the Ri moving in the irro- 
tational ‘ dry’ surroundings. This method has been developed by several workers but 
most completely by Deem & Zabusky ( 1 9 7 8 ~ ’  b )  and Zabusky, Hughes & Roberts 
(1979). These authors have used a real-variable formulation of the technique to study 
the nonlinear motion of isolated and interacting closed uniform vortices. A similar 
application has been given by Seo, Joynt & Llewelyn (1  979). The model is related by 
analogy to a similar model in plasma physics (see Berk, Nielsen & Roberts 1970) of the 
unsteady one-dimensional Vlasov equation (in fluid mechanics read two-dimensional 
vorticity equation) in phase space (physical space) for the plasma distribution function 
(vorticity) with long-range nonlinear coulombic (vortical) interactions. The common 
feature of these and other similar nonlinear systems that can be treated using the 
water-bag approach is the existence of a Hamiltonian formulation of the equations of 
motion which is only possible in fluid mechanics for two-dimensional inviscid flow. 

In the present work we apply the water-bag model to the nonlinear inviscid stability 
of an infinite layer of constant vorticity fluid adjacent to a solid wall, with slip at the 
wall. This problem is of interest firstly since there exists a linearized analysis (see 
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Rayleigh 1887 and the appendix) which indicates well-behaved neutral stability and 
which may serve as an analytical framework for interpreting the nonlinear results. 
Secondly, the model may have some a t  least qualitative relevance to the behaviour of 
the outer part of a fully developed constant pressure turbulent boundary layer, in 
particular to the formation of large-scale bulges at the turbulent-non-turbulent fluid 
interface observed by Kovasznay, Kibens & Blackwelder (1970), Falco (1977)) Brown 
& Thomas (1  977) and otherworkers. It is true that the vorticityderived from the mean- 
velocity profile is not constant over the outer part of the turbulent boundary layer. 
Kovasznay et al., however, using conditional averaging techniques based on the inter- 
mittency concept to  distinguish between turbulent and non-turbulent fluid, found that 
the mean vorticity of the turbulent fluid within the outer bulges was nearly constant. 
Furthermore, as will be seen, the unsteady constant vorticity model contains natural 
material boundaries (the Cj) which may be identified with the experimentally observed 
sharp interface between the vortical turbulent fluid and the irrotational free-stream 
fluid. The application of the constant-vorticity inviscid model to  boundary-layer 
behaviour has some precedent in the work of Perry & Fairlie (1975) who successfully 
applied the model to the steady flow formation of a separation-reattachment bubble 
within an adverse pressure gradient turbulent boundary layer. 

More serious than the constant vorticity assumption is the neglect in the present 
model of three-dimensional fluctuations which many workers feel are crucial to an un- 
derstanding of all aspects of turbulent near-wall flows. Hence, even if the instantaneous 
vorticity were initially constant, it could not remain so owing to three-dimensional 
vortex stretching. But, while it seems certain that a fully three-dimensional model, 
perhaps of the type proposed by Perry, Lim & Chong (1980) (see also the extensive 
three-dimensional calculations of Leonard 1980), is necessary to  explain the observed 
structure in the logarithmic mean-velocity profile region and in the viscous sublayer, it 
is less clear that three-dimensional motions are an essential ingredient in the dynamics 
of the outer part of the layer, particularly in respect of any large-scale, possibly 
coherent, motions. It will be presently seen that flow features bearing a distinct 
resemblance to  behaviour observed in boundary-layer flow-visualization studies may 
result from a purely two-dimensional nonlinear vortical interaction. 

I n  the following a complex variable formulation of the water-bag method is given 
in 9 2. The method is applied in 9 3 to  an infinite vortical layer at a wall with cyclic 
initial conditions on the material interface between vortical and non-vortical fluid, 
resulting in a nonlinear initial-value problem for the motion of the interface. A 
numerical model of the nonlinear equation is subsequently formulated, while the 
results of the numerical calculations are described and discussed in $4.  An analytical 
solution of the linearized equation is given in the appendix. 

2. General theory 
For simplicity we shall here consider the motion from time t = to of a single simply 

connected region R of fluid of constant vorticity w due to both its own self-induction 
and to the influence of an external applied velocity field. This region is assumed to  be 
bounded by a closed piecewise continuous curve C(t ) ,  the sense of which will be taken 
t o  be in the clockwise direction around R. The fluid outside R is assumed to  be irro- 
tational and the entire motion is assumed to be two-dimensional motion of an inviscid 
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fluid. We work in the complex Z = X + iY plane. At  any t to, C(t) will be described 
by the complex single-valued function ~ ( s ,  t) = x(s, t )  + iy(s, t ) ,  where s is a parameter 
(not necessarily arc length) which may be taken to increase along C( t )  clockwise. 
Since outside R the fluid is irrotational, there exists a complex potential W = q5 + i$ 
which by virtue of w = constant. may be written as 

where 2 = X‘ + i Y‘ is a point in R. In  (1) the first term is’the complex potential due 
to the vortical fluid in R while W, is that due to external influences. The complex 
velocity d W l d Z  = u - iv is then 

dW w dX’d Y‘ dW 

Applying the complex Green’s theorem for C clockwise 

to the double integral in (2) yields 

In equation (3) with Z fixed the log is defined as any branch which remains single- 
valued as z‘ traverses C .  

Now, whatever the motion of R for t 2 to as a result of the overall velocity field, the 
vorticity at  every point within R must remain constant and equal to w by Helmholtz’s 
theorem for inviscid two-dimensional flow. Moreover, C must remain a material curve 
which always delineates a boundary or interface between vortical and irrotational 
fluid. It is also true that the complex velocity of a particular particle on C at t may 

. ax(s,t)  
at ’ 

be written 
u-tv = - (4) 

where we have adopted the convention that s remains constant in time on a particular 
particle comprising (7 so that this quantity acts as a particle label. In  fact s will 
presently be seen to be a purely formal parameter used in practice only to define the 
initial conditions. We now allow Z-+ z(s, t )  on C in (3) and equate the right-hand side 
of (4) to the result, leading to an initial-value problem for the motion of C, 

ax - = - w $ log(z-z’)dz‘+- dW, 
at 4n dz ’ 

with initial condition z(s, 0). 
Although we shall subsequently use (5) directly, it  is convenient here to develop 

the equation into a simpler form. This can be achieved by transforming the integration 
with respect to 2‘ to that with respect to s‘ and integrating the result by parts to give 

Equation (6) is relatively simple for the purposes of numerical integration since as 
z+z’ on C the integrand takes the finite value dZ/dz = exp ( - Z i O ) ,  where 8 is the 
tangent angle of C to the X direction at  z. 
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Equation (5) or (6) is a mixed Eulerian-Lagrangian description of the motion of R 
in terms of the motion of C. The equations may be shown to preserve in time the 
constancy of the various integral invariants of the vorticity field (see Batchelor 1967, 
cha. 7). In addition, for several interacting regions it may be shown that the number of 
regions and the number and topology of the curves bounding these regions also 
remain invariant with time. The equations may be viewed as a generalization of the 
Birkhoff-Rott vortex-sheet equation and may be reduced to this equation when R 
is compressed into an infinitesimally thin region with w + co and area-+ 0 such that 
w x area = circulation remains finite. One further point which should be noted is that 
the right-hand side of (6) with z repIaced by 2 may be interpreted as the complex 
velocity u - iv even if Z lies within R. This may be demonstrated by deforming C for 
Z in R by the introduction of a cut joining Z to any part of the original boundary, 
required so as to make log (Z  - 2 ’ )  a single-valued function for application of the 
complex Green’s theorem. The contribution to the integral along both sides of the cut 
in (6) (but not in (5)) and around a small circle surrounding 2 in R may then be shown 
to vanish. In this case, however, u - iv is no longer an analytic function of Z alone. In  
the corresponding expression for W ,  21. = I m  ( W )  is still valid but the real part of W 
has no meaning as a velocity potential. 

3. Vortical layer at a wall 
3.1. Formulation of initial-value problem 

Here we shall apply (5) to the present case of a vortical layer of constant strength at a 
wall with slip at the wall. In the 2 plane, the wall is given by Y = 0,co > X > -m. 
In the unperturbed state, the vortical layer of constant strength w and thickness 6 
lies in S 2 Y 2 0 extending to infinity in the + X and - X directions. The fluid above 
the layer is irrotational. We shall work in a frame of reference at rest with respect to 
the fluid at  infinity so that the unperturbed velocity field is 

u = o ,  v = o ,  0 3 2 Y y S ,  

u = w(S-  Y ) ,  v = 0, 6 2 Y 2 0. 

We shall take w c 0 so that the fluid speed at  Y = 0 is in the negative X direction. To 
relate the model to a possible boundary-layer flow, we need to introduce a further 
effective slip velocity U, representing the velocity change over the inner part of the 
layer (compressed here onto a vortex sheet at Y = 0) so that the free-stream speed 
relative to an observer at rest with respect to the wall is 

uo = IwlS+U,. ( 8 )  

Note that this slip velocity would play no part in the model dynamics since the vortex 
sheet always remains attached to the wall. An alternative to (8) is to relate lwlS 
directly to mean-flow properties other than U,, in particular to the friction velocity u* . 
Since there is some experimental justification for such a relationship (Kovasznay et al. 
1970), it is the procedure followed in 54.2. 

We consider the evolution of periodic disturbances in the vortical boundary of 
fixed wavelength A in the X direction. Let the basic cycle of the disturbance on which 
we shall fix our attention be ti single wavelength in xo > X > xo+ A ,  where xo = xo( t )  
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FIGURE 1. (a) Periodic disturbance of interface between fluid of constant vorticity u adjacent to 
a wall and irrotational fluid a t  rest at infinity. ( b )  Rotational fluid region bounded by curves 
C j , j  = -m,  03. 

is to  be determined. Now consider 2M + 1 cycles comprising the basic cycle together with 
M repeated cycles in each of the + and - X directions. Denote by Cj, j = - M ,  . . ., M ,  
the curve in the clockwise direction surrounding the vorticity contained between the 
j t h  cycle of the boundary and the wall, and bounded a t  x = x,+jh, x,+ ( j +  l ) h  by 
vertical lines. The curves C-l, C, and Cl are shown in figure 1 ( b ) .  Then, applying (5), 
the equation of motion of points on the interface in the basic cycle is 

M+m 

(9) 

where the second integral represents the complex velocity due to  the image of the 
vorticity field in the wall, introduced so as to  satisfy the boundary condition of zero 
normal velocity a t  the wall. Now Cj is transformed to C, surrounding the basic cycle of 
vorticity in each term of (9) by replacing z’ by z’ +jh, j = - M ,  . . . + M .  Manipulating 
the result of this transformation, and utilizing a well-known product definition of the 
sine function in the M -+ co limit leads to 

We now break C, up into segments L,, L,, L3 and L4 as shown in figure 1 (b) ,  where Ll 
is the vortical interface and L,, L3 and L4 are straight sections. The contributions t o  the 
integrals in (10) along L,, L, and L4 may be evaluated with contour integration to  
yield the nonlinear initial-value equation for ~ ( s ,  t )  (including zo = x, + iy,) representing 
.the evolution of general periodic disturbances in the vortical interface,t 

?!! at = ~ ( / L , l o g [ s i n ( ~ ( z - z ’ ) ) ] d Z ‘ + ~ L l l o g  4n [sin(:(z-Z’))] d z ’ ) + ~ { i ( z - x o ) + X h } ,  
(11)  

Note that we do not need to consider directly the motion of L,-L, since these lines lie 
within the vortical layer. Hence, for the purposes of evaluating the velocity field on L,, L,, L3 
and L4 may be taken as instantaneously straight. 
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where K = log (2)/7l - i is a complex constant. The initial conditions on (1  1) are given 
as z(s, 0) at t = 0. Equation (1 1) is valid for finite 6. An equation valid for infinite S or 
equivalently for an isolated vortical interface, in a framework at  rest with respect to 
the irrotational fluid at  infinity, may be obtained by replacing z by z - iS in (1 1) and 
taking the limit of the result as S/h -+ co, giving 

In obtaining (12) it has been assumed that X axis is initially the mean level of L, SO 

that by conservation of circulation 

l L , y d z  = o for all t > 0. 

Equations (1 1) and (12) have been derived on the tacit assumption that L, does not 
become sufficiently distorted so as to extend outside of the basic wavelength range 
xo 2 X > xo + A. It may be nevertheless shown that these equations remain valid in 
the event of such distortions provided one chooses the branch of 

log [sin (n/h(z - z'))]  

to be used in the calculations carefully. The explicit details are not given here. 
The linearized stability of the constant vorticity layer was treated by Rayleigh 

(1887). From the general theory of inviscid stability of plane parallel flows it is known 
the layer must be stable to small disturbances, since the unperturbed velocity profile 
does not contain a point of inflection. The specific result, which may also be obtained 
directly from a linearized solution of (11) (see the appendix), is that a sinusoidal 
disturbance of wavelength h on the interface moves as a stable dispersive Kelvin- 
Helmholtz wave travelling in the same direction relative to the fluid at  infinity as is 
the wall, with phase velocity 

This result shows that short waves such that $ /A '  3 1 move with the free stream while 
long waves, 8/h -+ 0, move at  a velocity which is asymptotically wS with respect to the 
free stream. The wave period is then 

Material particles on the interface move in periodic trajectories with period tw so that 
this quantity is the natural time scale associated with wavelength A. Wavelike 
behaviour of a vortical interface has also been studied by Deem & Zabusky (1978a, b )  
who have obtained a class of nonlinear dispersive wave solutions (so-called ' V states ') 
of the Euler equations for rotating and translating finite-area uniform vortices. By 
analogy it is possible that finite-amplitude nonlinear progressive-wave-like solutions 
exist for the present configuration (for which the linearized solution is the small- 
amplitude limit) but this aspect of the problem has not been pursued in the present 
work. 
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3.2. Numerical solution of the nonlinear equation 

Introducing dimensionless variables 6 = E + iq and r given by 

into ( 1 1 )  yields 
C = z / h ,  r =  -wt 

where the integration along Ll extends from co = to + i ~ ,  to [N+l = co + 1. Now the 
integrand in the first term of ( 1 6 )  has singularitiesat 5' = 5 f k, k = 0,1,2,  . . .) of which 
only 6' = 6 lies within the integration range except where 5 = c0 or = <,y+l, in which 
case a second singularity at  6 = c,v+l or 5, respectively is introduced. Thus when 5 lies 
near (but not at) either Q or CN+, the singularity at 5 = (;+ 1 or g- 1 respectively 
generates a large (but finite) integrand near the other end point, which is unsuitable 
for numerical quadrature. To alleviate this problem we add and subtract 

1% r n x s  - 0 1  
to the integrand of the first term in ( 1 7 ) ,  where we arbitrary choose 6 = 6 -  1 if 
f ;  > to+ 4 and = c+ 1 if 6 < go + 4. Integrating the result by parts, which eliminates 
the Singularity a t  6 = 5') we obtain 

ac 1 - a7 = - - { L F ( [ ,  4n ( 0 )  - Q(cs? 60) l  - LF(6, C N + 1 )  - G(cs) cN+1)1 f F(6) go)  -F(6 ,  cN+l)> 

where F ( L  6') = (C- 0 log [Isin (nK- "))I) 
Q(6, 6') = (C- g') 1% [.(6- ")I* 

(18a) 

( 1 8 b )  

A numerical model of the nonlinear equation in the form of (17 )  (or of the equivalent 
form of ( 1 2 ) )  was constructed as follows. On Ll at time 7 ,  N points representing material 
particles within one wavelength are defined by Q(t) = &(t) +iqi(t), j = 1, ..., N .  The 
interface at  7 is defined by the N +  1 straight segments with end points (&-l, &), 
j = 1 )  . . . ) N + 1 .  For given Q the end points of integration on L, are defined by 

60 = 4 ( 6 l + c N - 1 )  and liv+1= C O + l .  

The interface in one wavelength is thus completed by joining cl and CN to cN - 1 and 
Cl + 1 (effectively in adjacent wavelengths) respectively, by straight line segments. 
The first two integrals in (1 7 )  cannot be evaluated analytically even along the straight 
segments and so were presently calculated a t  each r using a simple N + 2  point 
trapezoidal rule. Note that the integrand in the first integral in ( 1 7 )  is bounded but is 
not analytic at 6 = so that some additional loss of accuracy over that associated with 
the trapezoidal rule is possible. The third integral was approximated by 
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where (AC/ALJi = ((j-&-l)/(&-t&l). Each of the integrals on the right-hand side 
of (19)  can now be evaluated analytically. With this specification (17) was applied at  
each of Q, j = 1, , . . , N ,  yielding 2N ordinary nonlinear differential equations for Ej, qj, 
j = 1, ..., N which we write as 

- 
!%’ = n(5;, f, ..., &), j = 1 ,  ..., N ,  
a7 

with initial conditions cj(0), j = 1 ,  . . . , N .  For specified initial conditions the equations 
were integrated in time using an Adams predictor-corrector method in a routine due 
to Gear (1971). The routine varies the order of the predictor-corrector (eighth-order 
maximum) and the timestep AT within prescribed limits  AT,^^ < AT < AT,,, so as 
to keep the maxima of the error in the calculated &(T+AT) (error per timestep) a t  
less than a prescribed value E .  

4. Results and discussion 

shape a t  r = 0 by 
A set of calculations was carried out with initial conditions defining the interface 

( 2 1  a)  

W b )  

&(O) = S , + i  -+-cos(2nsj) , 1 [h” ; 
where si = [ j - # ( N +  l ) ] /N,  j = 1, ..., N .  

This presents a single cosinusoid of a wavelength h and dimensionless amplitude € / A  
initially placed in - 0-5 < [ < 0.5, with equal initial spacing in the [ direction between 
points. Initially N = 40 was chosen but, as will be seen, owing to severe contortion of 
the interface during some calculations, it was found that adjacent points initially 
close together could subsequently move rapidly apart. Hence new points were added 
a t  the mid-point of adjacent points Ci+ Q whenever these points moved such that 

up to a maximum determined by execution-time limitations of 60 points total on Ll. 

4.1.  Results of the nonlinear calculations 

Table 1 indicates the values of 6/h and s/h tested and also shows the corresponding 
values of €18. The nondimensional period T = - ot, for the linear wave follows from 

( 2 2 )  
(14) as 

Each integration started at  T = 0 and was continued until either r = 2T (calculation 
completed) or AT < Armin, where  AT,^,, = T/2000. This last event was taken to  
indicate a breakdown of the calculation. The specified maximum allowable error per 
timestep was chosen as E = 5 x 10-4. Two calculations were carried out with e / h  = 0 
as a check essentially of the u velocity calculation, against the known exact stationary 
solution r ]  = 6/h. For these cases the maximum displacement at T = 2T from their 
initial positions, of any point on the interface, was A5 = 0.0006. 

All calculations with s / h  = 0-0313 showed simple wave propagation behaviour in 
0 < r < 2T as predicted by the linear theory discussed in $3.1 (see also appendix). 
Each of figures 2-5 shows the time evolution of the vortical interface for several 

T = 4n(i - e - 4 m ) - 1 .  
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€ / A  0.0625 0.125 0.250 0.500 1.000 co 

0.03 13 0.5000* 0.2500* 0*1250* 0*0625* - O* 
0 0.0625 - 0.5000 0.2500 0.1250 - 

0.1250 - - 0.5000 0.2500 0.1250 - 
0 - - - 0.5000 - 0.2500 

- - - - 0.5000 - 0*5000 

- - O* - 0 - O* 

TABLE 1. Values of parameters for cosinusoidal initial conditions. Entries are values of €/a. 
* indicates that numerical solution exhibits behaviour predicted by linear theory. 

selected cases with larger values of € /A .  In  each figure three complete wavelengths are 
shown but it should be noted that these are not independently evolving but are simply 
graphical repetitions of the basic section. For these cases, the interface behaviour is 
rather different to that predicted by the linear theory. Some time after T = 0 the 
interface minima (valleys) are found to be moving faster in the negative X direction 
than are the peaks. Eventually this differential movement is so large that each valley 
develops a tip region of very high curvature leading a lengthening re-entrant wedge or 
arm of irrotational fluid that is entrained into the rotational layer, moving with 
respect to the free stream in the negative X direction. Between these irrotational 
wedges and the irrotational free stream, ‘lobes’ or ‘billows’ of rotational fluid are 
formed. 

The thickness of each wedge in each case decreases with increasing T partly because 
of volume conservation (since the wedge is lengthening) and partly because the irro- 
tational fluid velocity is slightly more positive than that of the surrounding rotational 
fluid so that fluid is escaping the entraining process. Much of the stretching of the 
boundary requiring the insertion of new points during the calculation occurs on either 
side of the lengthening wedge. The wedge tip was found to consist of essentially the 
same material particles throughout the computation, with tip velocity nearly equal to 
the fluid velocity that would be expected in the undisturbed parallel vortical layer at 
the calculated tip Y / h  position. Of the calculations illustrated only that of figure 2 
extends beyond T = T. In this case the envelope of the interface shape at  T N T corres- 
ponds roughly to the initial cosine shape, but with a slope discontinuity marking the 
entry to a, by now, collapsed irrotational wedge at the interface minimum. This sug- 
gests that the time scale for the development of nonlinear features may be taken to 
be of order T for given &/A.  To investigate this hypothesis for larger € / A ,  the case of 
figure 4 ( & / A  = 0.25, € / A  = 0.125) was continued by truncating the long irrotational 
arm at T = 12.5549 at  an arbitrary point along its length. The results are shown in 
figure 6. The nonlinear features continue to evolve but there is no indication of the 
formation of new irrotational wedges which might suggest nonlinear effects repeating 
every T. It seems possible, however, that with a new smooth valley forming at  
T = 22.8420 further re-entrant contortions may develop for T > 2T. Unfortunately, 
for reasons to be discussed it was not possible to  extend the calculation to these times, 
short of smoothing the interface shape to such an extent as to be effectively providing 
new cosinusoidal initial conditions, in which case wedge formation is inevitable. For 
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-1.0 0 

Xlh 

1 .o 

FIGURE 2. Evolution of periodic disturbance on vortical interface, &/A = 0.5, & / A  = 0.0625, 
T = 12.5899. (a) T = 0, ( b )  T = 2.5847, (c) 'T = 5.0486, ( d )  T = 7.5727, (e) 7 = 10.0918, 
(f) T = 12.6419, (9) 7 = 15.1586. 

values of 6/h = 1.0,00, the evolution of the interface was very similar to that for the 
corresponding value of e / h  a t  & / A  = 0.5. The conclusion to be drawn is that the pres- 
ence of the wall has little influence on the broad shape of evolving disturbances of 
wavelengths h < 28 unless E / A  = 0(6/h).  It will be subsequently shown, however, 
that the wall presence does lead to measurable differences in the propagation speed 
of disturbances in this range. 

In  each of figures 2-6 the last frame shown represents the termination of the calcu- 
lation when AT = Armin. This was usually associated with physically unrealistic 

14 F L h f  108 
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FIGURE 3. Evolution of periodic disturbance on vortical interface, Slh = 0.5, slh = 0.25, 

T = 12.5899. (a)  7 = 0, (b )  7 = 2.5274, (c) 7 = 5.0653, ( d )  T = 7.5756, (e) 7 = 94938. 

self-intersections of the interface, for example as shown in figure 3 ( e ) ,  and also with 
the beginnings of significant variations from the theoretically constant value of 
hSlol, for the total circulation per wavelength. This latter quantity was monitored 
during the calculation and was always constant to within 1 yo except in these final 
stages. The probable reason for this breakdown of all of the calculations exhibiting 
nonlinear behaviour is that disturbances of wavelength < h are developing on the 
interface on a scale that cannot properly be resolved with the maximum of 60 inter- 
face points presently utilized. Certainly the & / A  + 00 results show that nonlinear 
effects may occur for infinitesimally small wavelengths for the inviscid fluid. Also, if 
one accepts that T given by (22) is the appropriate nonlinear inertial time scale for 
given 6 /h ,  then, since T-+47r for co > S/h 2 0.25, one might then expect that all 
excited scales smaller than the basic h would develop simultaneously in a strongly 
coupled fashion. 

To pursue this point further, several additional calculations were carried out. 
Several cases were treated with initial conditions given by 

Cj(0) = ~~+i[0~250+0~125{A~0~(2~~~)+(1-A)~0~(4~~~)}], j = 1,  ..., N ,  (23) 
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X h  
FIGURE 4. Evolution of periodic disturbance on vortical interface, &/A = 0.25, € / A  = 0.125, 
T = 13.1339. ( a )  r = 0, ( b )  7 = 2.6995, (c) 7 = 5.2844, ( d )  7 = 7.9140, ( e )  7 = 10.5144. 
(f) 7 = 12.5549. 

Xlx  
FIGURE 5. Evolution of periodic disturbance on vortical interface, 6/h = 0.125, € / A  = 0.0625, 
T = 15.8642. ( a )  7 = 0, ( b )  7 = 3.1897, (c) 7 = 6.5248, (d )  7 = 9.5633, ( e )  7 = 12.7107, 
(f) 7 = 14.3514. 

with sj given by (21 b ) .  Equation (23) corresponds to a disturbance of amplitude 
€ / A  = 0.125 made up of fractions A and 1 - A respectively of two cosinusoidal modes 
with wavelengths 46 and 26 respectively. Values of A = 0.25, 0.5 and 0.75 were used. 
The results in figure 7 for A = 0.5 show the development of the two modes with the 
shorter wave mode evolving nonlinearly while being carried on the back of the 
rotational lobe corresponding to the longer wavelength. For A = 0.25,0.75 the shorter 

14-2 
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FIGURE 6. Continuation of calculation of figure 4, S / A  = 0.25, ~ / h  = 0.125. (a)  7 = 12.5549, 
( b )  T = 13.1661, (c) 7 = 15.2935, ( d )  7 = 18-4297, (e) 7 = 20.9665, (f) 7 = 22.8420. 

( b )  0.25 

(c) 0.25 

(d) 0.25 

(e) 0.25 

'3 0.25 

-1.0 0 1 .o 
Ylh 

FIGURE 7. Evolution of periodic disturbance on vorticd interface; two-mode interaction, 
6 / h  = 0-250, E / A  = 0.125, A = 0.5. (a )  T = 0, ( b )  T = 2.7232, (c) T = 5.2829, (13) 7 = 7.8935, 
( e )  7 = 10.5150, (f) T = 11.6506. 
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z . 

(c ,  0.25 

(d )  0.25 

-1.0 0 1 .o 

XIX 
FIGURE 8. Evolution of disturbance on vortical interface ; four-mode interaction, 

& / A  = 0.25. (a) T = 0, ( b )  T = 2.6307, (c) T = 5.2717, ( d )  7 = 7.2270. 

and longer wavelength respectively is dominant with results similar to these of 
figures 3 and 4 respectively. Finally a case with initial conditions given by 

cj(0) = si+~[0~250+0~125cos(2nsi)+0~0625cos(4nsi)-0~0312cos(8.rrsj) 
-0*0156~0~(16n~j)], j = 1 ,..., N ,  (24) 

was tested with N = 56 initially, corresponding to four modes of progressively smaller 
wavelengths with amplitudes chosen so that s/h = 0.125 for each mode. As shown in 
figure 8 the calculation does not last for a very long fraction of T since the smaller- 
scale disturbances soon develop their own nonlinear convolutions leading to a very 
complicated boundary or interfacial shape and to subsequent breakdown of the 
calculation. 

4.2. Discussion 

Spacially non-uniform distortion of convecting free vortical boundaries have been 
noted by several workers. Deem & Zabusky (1978b)  and Seo et al. (1979) found that 
the timewise evolution of a finite perturbation to the shape of a uniform circular vortex 
eventually led to the formation of an interfacial cusp and subsequently to the appear- 
ance of a filament of detrained vorticity projecting into the irrotational fluid. Similar 
phenomena were found to result from the mutually interactive distortion of groups of 
initially circular vortices. Moffatt & Moore (1979) have shown that the response of a 
Hills spherical vortex to an axisymmetric disturbance is to either entrainldetrain a 
narrow spike of irrotational/rotational fluid intolout-of the vortex at the rear stag- 
nation point. The type of motion which occurs depends on the geometry of the 
perturbation. Moffatt & Moore interpret this behaviour as due to the presence of a 
rear stagnation point near which the disturbed irrotational flow quickly deforms the 
initial perturbed boundary shape. 

For the present configuration a related physical explanation is suggested as follows : 
for sufficiently large € / A ,  the interfacial valleys will reach the vicinity of the fluid 
critical layer, defined as that Y station at which the timewise mean X fluid velocity is 
equal to the linearized wave speed c .  At larger € / A ,  deeper into the vortical layer, it 
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may be thus expected that the mean flow would tend to convect material particles on 
the interfacial valleys in the negative X direction with speeds exceeding Icl, leading 
then to differential wave crest/valley movement and to the onset of nonlinearity. In  
this sense the nonlinear interface behaviour may be viewed as essentially kinematic, 
i.e. the specially non-uniform distortion of a mode of a neutrally stable, dispersive 
Kelvin-Helmholtz wave by the mean flow at or below the fluid critical layer. Thus the 
critical layer here plays the same role as does the rear stagnation point in the spherical 
vortex flow. There is an important difference, however, in that the spherical vortex 
distortion may be generated by an infinitesimal perturbation, whereas in the present 
case a finite-amplitude wave is evidently required. 

Given the above, an estimate for the range of validity of the linear theory follows by 
supposing that the unperturbed fluid speed at the Y position of the interface valley 
must not exceed c. Using (13), one obtains 

For 8/h S 0.5 this leads to s /h  -= 1/4n, which as a rough estimate is consistent with 
the present results. For long waves the result is € / A  < 8/h, which must always be true, 
so that we might expect that the linear theory is uniformly valid in s / h  in this limit. 

Several studies of the outer-intermittent region of the constant-pressure turbulent 
boundary layer have revealed features on the scale of the layer thickness which 
distinctly resemble those seen in the present calculations. Falco (1  977), using asmoke- 
marking flow-visualization technique, observed large-scale motions ' defined by the 
bulge at the top of the layer and by concentration gradients that extend from the 
smoke-no-smoke interface deep into the layer '. The average distance between bulges 
was found to be about 2.5 times the nominal boundary-layer thickness (that point at 
which u = 0.99Uo) which we may here identify with 8. A combination of measurements 
from hot wires arrayed across the boundary layer and from wall shear-stress probes 
led Brown & Thomas (1977) to suggest the existence of a coherent large-scale structure 
in the outer part of the boundary layer of length about 28 and tilted forward in the 
upstream direction at  an angle of about 18-20" to the wall. This angle is very nearly 
that marked by smoke concentration gradients in Falco's photographs and is not too 
different from the inclination angle of the irrotational arms in the present calculations 
(see figures 2-6), while they remain of finite thickness. In  their recent smoke-marking 
flow-visualization studies Head & Bandyopadhyay (1981) also note the presence of a 
feature associated with low smoke concentration and inclined at about 20" to  the wall. 
They do not regard this as part of a large coherent eddy, however, but rather as a 
random alignment of the tops of hairpin-like vortices originating from the viscous 
sublayer and projecting into the outer part of the boundary layer at an angle of about 
45". Head & Bandyopadhyay do not consider that any coherent large-scale motion is 
present in the outer reaches of the layer other than a slow overturning motion. 

But, whether or not they constitute part of a recognizably coherent motion, there 
seems little doubt that bulges or lobes of turbulent fluid can be identified at  the 
rotational-irrotational fluid interface and that these bulges move slightly slower than 
the free stream relative to an observer stationary with respect to the wall. Estimates 
of the convection velocity at  the front or crest of and at the rear or back of these bulges 
were deduced by Kovasznay et al. (1970) from space-time velocity correlation 
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FIGURE 9. Calculated lobe front and back velocities against A/& 0, € / A  = 0.0625 ; , e /h  = 0.125 ; 
8, e /h  = 0.25; a, e /h  = 0.5; 0 ,  measurement, Kovasznay et al. (1970). Flagged symbols 
represent lobe back velocities. -, linearized wave velocity. 

measurements. These are compared in figure 9 with estimates of the lobe front and 
back velocities obtained from the present results. The calculated lobe front velocities 
were taken as the mean velocity at the upstream point of infinite slope dq/dc, while 
the back velocities were taken as the average velocity on the lobe back at  q = &/A.  
To enable comparison with experiment, estimates of the experimental w and h 
are required. Kovasznay et al. found that the nearly constant value of w within 
the turbulent fluid near the bulges was given by Iwl& N 8-3u,, where u, = ( ~ , / p ) *  
is the friction velocity, T~ is the wall shear stress and p is the fluid density. For their 
experiment u*/Uo N 0.045 giving (018 21 0*37U0. The effective experimental h has been 
taken as the mean of the characteristic bulge streamwise dimension of order S given 
by Kovasznay et al. The data are at  least consistent with the trend of the theory in 
figure 9 even though the latter show sizeable variation with ~ / h  a t  S / A  = 1.0. Given 
that the measurements themselves show considerable variation across the outer part 
of the layer as shown in figure 16 of Kovasznay et al.'s paper (the quoted values are 
averages), the comparison with the predicted results is regarded as encouraging. 
Figure 10 shows calculated instantaneous streamline patterns for the case 8 / h  = 0.250, 
s /h  = 0.125, as seen in a framework moving with the average lobe velocity of 
- 0-271wlS. In  figure lO(b),  the general pattern of the motion within the lobe is circu- 
latory, being upwards and away from the wall along the lobe back, and towards the 
wall a t  the lobe front. A saddle point (moving stagnation point) may be seen near to 
but not actually on the lobe back near the mouth of the arm of irrotational fluid. The 
pattern depicted in figure 10 ( b )  is characteristic of streamline patterns obtained for 
other cases and is generally similar to the pattern of motion within the large-scale 
bulges observed by Kovasznay et al. (1970), Falco (1977) and Brown & Thomas (1977). 
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FIUURE 10. Instantaneous streamlines as seenmoving in reference frame with velocity - 0.27 Iw [  8 
relative to free stream, & / A  = 0.25, E / A  = 0.125. -, streamlines; . . . , points on vorticd 
interface. (a )  T = 0, interior streamline Y/lolS2 = -0.350, (b )  r = 5-2844, interior streamline 
Y/(wj&a = -0.300, streamline spacing A Y / ( w l 8 ~  = -0.05; x , approximate position of saddle 
point. 

5. Conclusions 
The present results show that the nonlinear behaviour of the constant-vorticity 

layer may be very different from the neutral stability predicted by the linear theory. 
For a finite initial disturbance, nonlinearity is evidently possible on all wavelengths 
from effectively zero (for the inviscid fluid) to those very long compared to the layer 
thickness, where it is attenuated onlyby limitations to the allowable size of disturbance 
amplitudes imposed by the presence of the wall. There is sufficient similarity of our 
results to existing observations of motions in the outer part of the boundary layer to 
suggest that the two-dimensional spacially non-uniform entrainment mechanism 
discussed in $4.2 may play a significant role in the outer-layer behaviour. Three- 
dimensional motions in the layer may be produced either by the hairpin-like vortices 
of Head & Bandyopadhyay (1981), originating through events in the viscous sublayer 
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and projecting outwards, or by spanwise buckling of vortex lines associated with the 
mean shear in the outer part of the layer, or by a combination of both effects. At 
sufficiently high Reynolds numbers, the vortex lines associated with the three- 
dimensional motion probably point both towards and away from the wall so that this 
motion might be thought of as being generated by a dipole field tilted at  45" to the 
wall in the direction of the mean flow (Perry 1979, private communication). One 
possible explanation for the similarity of the present two-dimensional results and 
the outer-boundary-layer behaviour is that such a dipole field induces slow three- 
dimensional distortions of the lobe-like rotational structures generated by the 
nonlinear vortical interaction associated with mean shear but does not otherwise exert 
significant dynamical influence on this interaction. Alternatively a three-dimensional 
instability may in fact be required to generate a local disturbance of sufficient 
amplitude to initiate critical-layer interfacial distortion associated with mean shear. 

In  contrast to the behaviour of the free shear layer the wall layer exhibits no 
preference for any particular scale or wavelength. The inviscid free shear layer of 
thickness 6 is known to be linearly stable to two-dimensional disturbances of wave- 
length h < 56 (Rayleigh 1880) and unstable otherwise with maximum temporal 
amplification occurring at h about 76 to 86 (Rayleigh 1880; Michalke 1964). Thus for 
wavelengths of this order very strong nonlinear instabilities leading to the roll-up and 
pairing phenomena observed in mixing and free shear-layer experiments and simu- 
lated numerically by Acton (1976) occur, which are readily identified with notions of 
coherent large eddies. Smaller-scale nonlinearities such as those seen here may develop 
on and be convected with the large-scale motion but the overall dynamics of the flow 
are clearly dominated by the larger structures. In  the wall layer a disturbance of any 
wavelength locally of sufficient amplitude in the sense of (25) may develop spacially 
non-uniform features leading then to a broad spectrum of possible active eddy scales. 
Thus, if our results are relevant to the behaviour of the outer part of the turbulent 
boundary layer, it  must be concluded that they neither support nor contradict the 
large-scale motions hypothesis since in each individual calculation a definite periodic 
wavelength was imposed, which necessarily leads to ordered motion on this scale, 
but no preferential wavelength was indicated. The present results may, however, 
indicate the form such motions would take if indeed they are present. Of course, the 
possibility remains that some dominant scaling is provided through the coupling of 
events occurring in the region of the viscous sublayer and the outer part of the layer 
(responding perhaps through the mechanism described here) as part of an as yet 
imperfectly understood process occurring in the boundary layer as a whole. 

Finally a comment is necessary on the use of (21) with finite € / A ,  as the initial 
condition for the calculations. A referee has pointed out that this initial condition is 
somewhat artificial since, in view of the stability of the flow to small perturbations, 
there is no reason at all to expect to find such finite-amplitude waves on the interface. 
We accept that this may be seen to represent a conceptual difficulty in the context of 
the two-dimensional motion. We can then only justify the use of (21) (with finite € / A )  
firstly on the grounds of the rather surprising and unexpected response of the vortical 
layer and secondly on the suggested relevance of this response to the outer turbulent 
boundary-layer flow. 
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Appendix. Solution of the linearized equation 
Here we consider the evolution of small perturbations to the undistributed shape 

of the vortical interface. For this purpose, rather than utilizing the Lagrangian 
description implicit in ( 11) it is more convenient to  work within an Eulerian specifi- 
cation, describing the displacement of the interface at given X by 

y ( X , t ) ,  * A  2 x 2 -&A.  
The equation of y ( X ,  t )  may be written as 

where u - iv is given by the right-hand side of (1 1) with z = X + iy(X, t ) .  The linearized 
analysis proceeds by writing 

y(X, t )  = yo(X, t )  + e'y,(X, t )  + * - 6, 
U ( X ,  t )  = Uo(X, t )  + dU1(X,  t )  + . .., 
W(X, t )  = Wo(X, t )  + dW1(X, t )  + . . . , 

where yo(X, t) = 8, uo(X, t) = wo(X, t )  = 0 are the unperturbed state of the vortical 
interface and E' is a small parameter. Substituting (A 2) into the right-hand side of 
(1  l ) ,  the result into (A I), expanding in E' and retaining terms linear in this quantity, 
one obtains the linearized equation for y l ( X ,  t )  

- = - f y , (X' , t )  Re ( X  - X' + 2id) ax', I1 
(A 3) 

8y1(X, t )  0 *i2 

at --hi2 

where the first term on the right-hand side represents a Cauchy principal-value 
integral. 

We seek a solution to (A 3) of the form 

y l ( X ,  t )  = a#) cos - 2nX +a ( t )  sin 
( A )  (Y), 

where al(t) ,  a2(t) are amplitude functions to be'determined. Substituting (A 4) into 
(A 3) and carrying out the integrations on the right-hand side yields 

- Ja,, - -Ja2 ,  - - da2 da, _ -  
dt at 

where J = &w( 1 - e-4nd/h). This is sufficient to indicate neutral stability. Solving 
(A 5 )  for initial conditions al(0), a2(0) leads to the solution 

y l ( X , t )  = al(0)cos 

representing a neutrally stable dispersive wave travelling in the same direction 
relative to the fluid at infinity as is the wall with velocity 
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